Chromatin acetylation at transcription start sites and vitamin D receptor binding regions relates to effects of 1α,25-dihydroxyvitamin D3 and histone deacetylase inhibitors on gene expression
نویسندگان
چکیده
The nuclear hormone 1α,25-dihydroxyvitamin D(3) (1α,25(OH)(2)D(3) or 1,25D) regulates its target genes via activation of the transcription factor vitamin D receptor (VDR) far more specifically than the chromatin modifier trichostatin A (TsA) via its inhibitory action on histone deacetylases. We selected the thrombomodulin gene locus with its complex pattern of five VDR binding sites and multiple histone acetylation and open chromatin regions as an example to investigate together with a number of reference genes, the primary transcriptional responses to 1α,25(OH)(2)D(3) and TsA. Transcriptome-wide, 18.4% of all expressed genes are either up-or down-regulated already after a 90 min TsA treatment; their response pattern to 1α,25(OH)(2)D(3) and TsA sorts them into at least six classes. TsA stimulates a far higher number of genes than 1α,25(OH)(2)D(3) and dominates the outcome of combined treatments. However, 200 TsA target genes can be modulated by 1α,25(OH)(2)D(3) and more than 1000 genes respond only when treated with both compounds. The genomic view on the genes suggests that the degree of acetylation at transcription start sites and VDR binding regions may determine the effect of TsA on mRNA expression and its interference with 1α,25(OH)(2)D(3). Our findings hold true also for other HDAC inhibitors and may have implications on dual therapies using chromatin modifiers and nuclear receptor ligands.
منابع مشابه
Mechanism of 1α,25-dihydroxyvitamin D(3)-dependent repression of interleukin-12B.
Interleukin 12 (IL-12) is a heterodimeric, pro-inflammatory cytokine that plays a central role in activation and differentiation of CD4(+) T cells into interferon-γ secreting T-helper type 1 cells. IL-12B, a gene encoding the larger subunit of active IL-12, has been reported to be down-regulated by the nuclear hormone 1α,25-dihydroxyvitamin D(3) (1α,25(OH)(2)D(3)), but the mechanism of the regu...
متن کاملCyclical regulation of the insulin-like growth factor binding protein 3 gene in response to 1α,25-dihydroxyvitamin D3
The nuclear receptor vitamin D receptor (VDR) is known to associate with two vitamin D response element (VDRE) containing chromatin regions of the insulin-like growth factor binding protein 3 (IGFBP3) gene. In non-malignant MCF-10A human mammary cells, we show that the natural VDR ligand 1α,25-dihydroxyvitamin D(3) (1α,25(OH)(2)D(3)) causes cyclical IGFBP3 mRNA accumulation with a periodicity o...
متن کاملDistinct HDACs regulate the transcriptional response of human cyclin-dependent kinase inhibitor genes to trichostatin A and 1α,25-dihydroxyvitamin D3
The anti-proliferative effects of histone deacetylase (HDAC) inhibitors and 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] converge via the interaction of un-liganded vitamin D receptor (VDR) with co-repressors recruiting multiprotein complexes containing HDACs and via the induction of cyclin-dependent kinase inhibitor (CDKI) genes of the INK4 and Cip/Kip family. We investigated the effects o...
متن کاملCooperation between BRCA1 and vitamin D is critical for histone acetylation of the p21waf1 promoter and for growth inhibition of breast cancer cells and cancer stem-like cells
Carriers of germline mutations in the BRCA1 gene have a significant increased lifetime risk for being diagnosed with breast cancer. The incomplete penetrance of BRCA1 suggests that environmental and/or genetic factors modify the risk and incidence among mutation carriers. Nutrition and particular micronutrients play a central role in modifying the phenotypic expression of a given genotype by re...
متن کاملEpigenetic Regulation of BMP2 by 1,25-dihydroxyvitamin D3 through DNA Methylation and Histone Modification
Genetic hypercalciuric stone-forming (GHS) rats have increased intestinal Ca absorption, decreased renal tubule Ca reabsorption and low bone mass, all of which are mediated at least in part by elevated tissue levels of the vitamin D receptor (VDR). Both 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and bone morphogenetic protein 2 (BMP2) are critical for normal maintenance of bone metabolism and bone ...
متن کامل